SPECIFICATION

Device Name : IGBT

Type Name : FGW40N120HD

DWG. No. : MS5F07635

Date : Sep.-28-2010

This material and the information herein is the property of Fuji Electric Systems Co.,Ltd. They shall be neither reproduced, copied, lent, or disclosed in any way whatsoever for the use of any third party nor used for the manufacturing purposes without the express written consent of Fuji Electric Systems Co.,Ltd.

					DATE	NAME	APPROVED	
				DRAWN	Sep./28/'10	R.Araki		L
				CHECKED	Sep./28/'10	A. Kitamura	n. Figure	ľ
RE	VIS	1018	NS	CHECKED	Sep./28/'10	O. Parneda	')]	

Fuji Electric Systems Co.,Ltd.

MS5F07635

Revised Records

Date Classification Index Content Drawn Checked Checked Approved Sep.28 O.Yamada N.Fujishima enactment A.Kitamura 2010 R. Araki A. Kitamura O. Samula p. Jos Oct.29 Revised FWD revised а 2010 characteristic

This material and the information herein is the property of Fuji Electric Systems Co., Ltd. They shall be neither reproduced, copied, lent, or disclosed in any way whatsoever for the use of any third party nor used for the manufacturing purposes without the express written consent of Fuji Electric Systems Co., Ltd.

Fuji Electric Systems Co.,Ltd.

OWG.NO

MS5F07635

1.Scope:

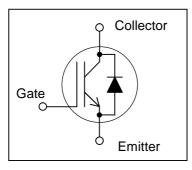
This specifies Fuji Discrete IGBT "FGW40N120HD"

2.Construction:

IGBT in Trench gate Field stop technology with Ultra fast FWD

3.Applications:

Uninterrupted Power Supply PV Power Conditioner Inverter welding machine


4.Package:

TO-247 (See to 11/17 page)

5.Packing:

Plastic tube

6.Equivalent circuit

7. Absolute Maximum Ratings at Tj=25°C (unless otherwise specified)

Items	Symbol	Characteristics	Unit	Remarks
Collector-Emitter Voltage	V _{CES}	1200	V	
Gate-Emitter Voltage	V _{GES}	±20	V	
DC Collector Current	I _{C@25}	70	А	Tc=25°C,Tj=150°C
DC Collector Current	I _{C@100}	40	А	Tc=100°C,Tj=150°C
Pulsed Collector Current	I _{CP}	120	А	Note *1
Turn-Off Safe Operating Area	-	120	А	Vcc≤600V,Tj≤175°C
Diada Famunad august	I _{F@25}	52	А	
Diode Forward current	I _{F@100}	30	А	
Short Circuit withstand time	t _{SC}	5	μS	Vcc≤600V,VGE=12V Tj≤150°C
IGBT Max. Power Dissipation	P _{D_IGBT}	340	10/	Tc=25°C
FWD Max. Power Dissipation	P _{D_FWD}	190	W	Tc=25°C
Operating Junction Temperature	Tj	-40 ~ +175	°C	
Storage Temperature	T _{stg}	-55 ~ +175	°C	

This material and the information herein is the property of Fuji Electric Systems Co.,Ltd. They shall be neither reproduced, copied, lent, or disclosed in any way whatsoever for the use of any third party nor used for the manufacturing purposes without the express written consent of Fuji Electric Systems Co.,Ltd.

Fuji Electric Systems Co.,Ltd.

OWG.NC

MS5F07635

This material and the information herein is the property of Fuji Electric Systems Co., Ltd. They shall be neither reproduced, copied, lent, or disclosed in any way whatsoever for the use of any third party nor used for the manufacturing purposes without the express written consent of Fuji Electric Systems Co., Ltd.

8.Electrical Characteristics at Tj=25°C (unless otherwise specified)

Static Characteristics

Description	Symbol	Conditions		min.	typ.	max.	Unit
Collector-Emitter breakdown Voltage	V _{(BR)CES}	$I_{CE} = 250 \mu A$ $V_{GE} = 0 V$		1200	-	-	V
Zero gate Voltage		V _{CE} = 1200V		-	-	250	uA
Collector current	ICES	$V_{GE} = 0V$	Tj=175°C	-	-	2	mA
Gate-Emitter leakage current	I _{GES}	$V_{CE} = 0V$ $V_{GE} = \pm 20V$		1	1	200	nA
Gate-Emitter Threshold Voltage	V _{GE(th)}	$V_{CE} = +20V$ $I_{CE} = 40mA$		4.0	5.0	6.0	٧
Collector-Emitter	.,	V _{GE} = +15V I _{CE} = 40A	Tj=25°C	-	1.8	2.34	V
saturation Voltage	$V_{CE(sat)}$		Tj=175°C	-	2.3	-	1

Dynamic Characteristics

Description	Symbol	Conditions	min.	typ.	max.	Unit
Input Capacitance	Cies		1	3000	-	
Output Capacitance	Coes	V _{CE} =25V V _{GE} =0V	ı	130	-	pF
Reverse Transfer Capacitance	Cres	f=1MHz	ı	100	-	r
Gate Charge	Q_{G}	$V_{CC} = 600V$ $I_{C} = 40A$ $V_{GE} = 15V$	ı	300	-	nC
Turn-on delay time	td(on)	. Tj = 25°C	-	35	-	
Rise time	tr	$V_{CC} = 600V$ $I_{C} = 40A$	-	60	-	
Turn-off delay time	td(off)	V _{GE} = 15V	-	315	-	ns
Fall time	tf	$R_{G} = 10\Omega$ $L = 500 \mu H$	-	40	-	
Turn-on Energy	Eon	Energy loss include "tail" and FWD reverse	-	2.8	-	1
Turn-off Energy	Eoff	recovery.	-	1.8	-	mJ
Turn-on delay time	td(on)	Tj = 175°C	-	35	-	
Rise time	tr	V _{CC} = 600V	-	60	-	
Turn-off delay time	td(off)	$I_{C} = 40A$ $V_{GE} = 15V$ $R_{G} = 10\Omega$ $L = 500 \mu H$	-	350	-	ns
Fall time	tf		-	75	-	
Turn-on Energy	Eon	Energy loss include "tail" and FWD reverse	-	4.8	-	1
Turn-off Energy	Eoff	recovery.	-	3.0	-	mJ

Fuji Electric Systems Co.,Ltd.

OWG.NC

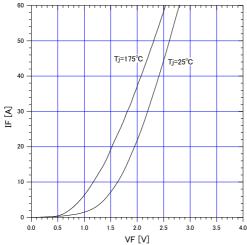
MS5F07635

This material and the information herein is the property of Fuji Electric Systems Co.,Ltd. They shall be neither reproduced, copied, lent, or disclosed in any way whatsoever for the use of any third party nor used for the manufacturing purposes without the express written consent of Fuji Electric Systems Co.,Ltd.

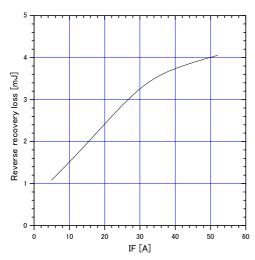
FWD Characteristics

Description	Symbol	Conditions		min.	typ.	max.	Unit		
Converd voltage drep	M	1 204	Tj=25°C	-	2.2	2.8	V]	
Forward voltage drop	V _F	I _F =30A	I _F =30A	i _F =30A	Tj=175°C -	1.8	-	٧	
Diode Reverse Recovery Time	trr	V_{CC} =30V, I_F = 3.0A -di/dt=200A/ μ s		-	49	63	ns	а	
Diode Reverse Recovery Time	trr	V_{CC} =600V I_F =30A $-di_F/dt$ =200A/ μ s Tj=25°C		-	0.44	-	μS		
Diode Reverse Recovery Charge	Qrr			-	1.35	-	μС		
Diode Reverse Recovery Time	trr	V_{CC} =600V I _F =30A -di _F /dt=200A/ μ s Tj=175°C		-	0.70	-	μS		
Diode Reverse Recovery Charge	Qrr			-	6.00	-	μС		

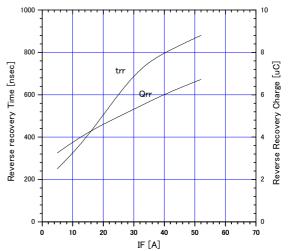
9.Thermal Resistance

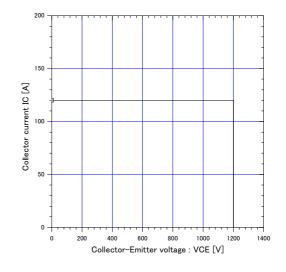

Description	Symbol	min.	typ.	max.	Unit
Thermal Resistance, Junction-ambient	Rth(j-a)	-	-	50	°C/W
Thermal Resistance, IGBT Junction to Case	Rth(j-c)_ _{IGBT}	-	-	0.439	°C/W
Thermal Resistance, FWD Junction to Case	Rth(j-c)_ _{FWD}	-	-	0.781	°C/W

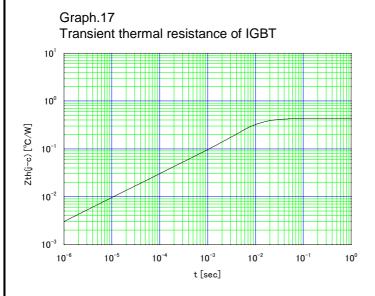
Note


*1 : Pulse width limited by Tjmax.

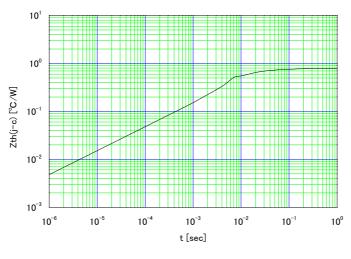
This material and the information herein is the property of Fuji Electric Systems Co.,Ltd. They shall be neither reproduced, copied, lent, or disclosed in any way whatsoever for the use of any third party nor used for the manufacturing purposes without the express written consent of Fuji Electric Systems Co.,Ltd.


Graph.13 FWD Forward voltage drop (VF-IF)

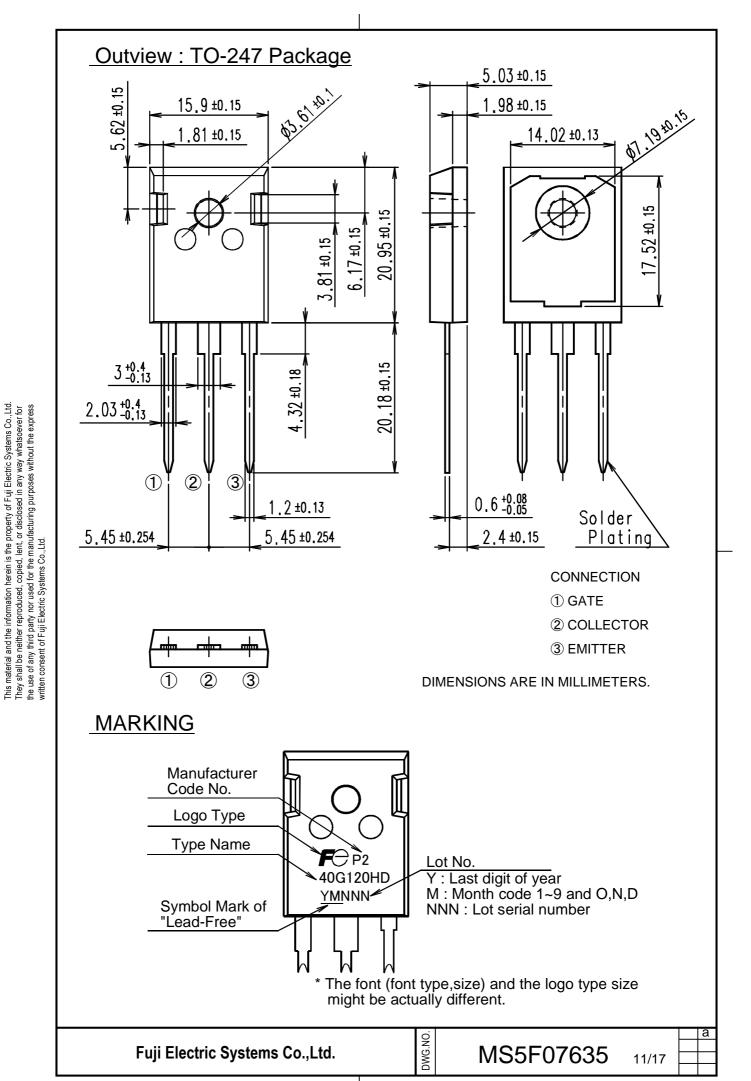

Graph.15 Typical reverse recovery loss vs. IF Tj=175°C,Vcc=600V,L=500 μ H V_{GE}=15V,R_G=10 Ω



Graph.14 Typical reverse recovery characteristics vs. IF Tj=175°C,Vcc=600V,L=500 μ H V_{GE}=15V,R_G=10 Ω



Graph.16 Reverse biased Safe Operating Area Tj≤175°C, V_{GE} =+15V/0V, R_{G} =10 Ω


Graph.18 Transient thermal resistance of FWD

Fuji Electric Systems Co.,Ltd.

WG.NC

MS5F07635

10.Reliability test items

All guaranteed values are under the categories of reliability per non-assembled(only IGBTs). Each categories under the guaranteed reliability conform to EIAJ ED4701/100 method104 standards.

Test items required without fail Humidification treatment (85±2°C,65±5%RH,168±24hr) Heat treatment of soldering (Solder Dipping,260±5°C(265°Cmax.),10±1sec,2 times)

	Test No.	Test Items	Testing methods and Conditions	Reference Standard	Sampling number	Acceptance number
	1	Terminal Strength (Tensile)	Pull force TO-247 : 25N Force maintaining duration :30±5sec	EIAJ ED4701/400 method 401	15	
	2	Terminal Strength (Bending)	Load force TO-247 : 10N Number of times :2times(90deg./time)	EIAJ ED4701/400 method 401	15	
	3	Mounting Strength	Screwing torque value: (M3) TO-247: 50 ± 10N • cm	EIAJ ED4701/400 method 402	15	
Mechanical test methods	4	Vibration	frequency: 100Hz to 2kHz Acceleration: 200m/s² Sweeping time: 4min. 48min. for each X,Y&Z directions.	EIAJ ED4701/400 method 403	15	(0:1)
st methods	Peak amp Shock Duration ti 3times for		Peak amplitude: 15km/s² Duration time : 0.5ms 3times for each X,Y&Z directions.	EIAJ ED4701/400 method 404	15	(4.17)
	6	Solderability	Solder temp.: 245±5°C Immersion time: 5±0.5sec Each terminal shall be immersed in the solder bath within 1 to 1.5mm from the body. Solder alloy: Sn-Ag-Cu type		15	
	7	Resistance to Soldering Heat	Solder temp.: 260 ± 5°C Immersion time: 10 ± 1sec Number of times: 1times Solder alloy: Sn-Ag-Cu type	EIAJ ED4701/300 method 302	15	

Fuji Electric Systems Co.,Ltd.

MS5F07635

This material and the information herein is the property of Fuji Electric Systems Co., Ltd. They shall be neither reproduced, copied, lent, or disclosed in any way whatsoever for the use of any third party nor used for the manufacturing purposes without the express written consent of Fuji Electric Systems Co., Ltd.

	Test No.	Test Items	Testing methods and Conditions	Reference Standard	Sampling number	Acceptance number
	1	High Temp. Storage	Temperature : 175+0/-5°C Test duration : 1000hr	EIAJ ED4701/200 method 201	22	
	2	Low Temp. Storage	Temperature : -55+5/-0°C Test duration : 1000hr	EIAJ ED4701/200 method 202	22	
	3	Temperature Humidity Storage	Temperature: 85±2°C Relative humidity: 85±5% Test duration: 1000hr	EIAJ ED4701/100 method 103	22	
Climatic test methods	Temperature 4 Humidity BIAS		Temperature: 85±2°C Relative humidity: 85±5% Bias Voltage: V _{CE} (max) * 0.8 Test duration: 1000hr	EIAJ ED4701/100 method 103	22	. (0:1)
st methods	5	Unsaturated Pressurized Vapor	Temperature : 130±2°C Relative humidity : 85±5% Vapor pressure : 230kPa Test duration : 48hr	EIAJ ED4701/100 method 103	22	(0.1)
	6	Temperature Cycle	High temp.side: 175±5°C/30min. Low temp.side: -55±5°C/30min. RT: 5°C ~ 35°C/5min. Number of cycles: 100cycles	EIAJ ED4701/100 method 105	22	
	7	Thermal Shock	Fluid: pure water(running water) High temp.side: 100+0/-5°C Low temp.side: 0+5/-0°C Duration time: HT 5min,LT 5min Number of cycles: 100cycles	EIAJ ED4701/300 method 307	22	
Endura	□ Intermittent Δ☐ 8 Operating Tj≦ Life Tes		ΔTc=90degree Tj≦Tj(max.) Test duration : 3000 cycle	EIAJ ED4701/100 method 106	22	
Endurance test methods	9	HTRB (Gate-Emitter)	Temperature: Tj=175+0/-5°C Bias Voltage: +V _{GE} (max) Test duration: 1000hr	EIAJ ED4701/100 method 101	22	(0:1)
nethods	10	HTRB (Collector-Emitter)	Temperature: Tj=175+0/-5°C Bias Voltage: V _{CE} (max)*0.8 Test duration: 1000hr	EIAJ ED4701/100 method 101	22	

Failure Criteria

	Item	Symbols	Failure (Unit	
	Item		Lower Limit	Upper Limit	Offic
Electrical Characteristics	Zero gate Voltage Collector-Emitter Current	ICES		USL	Α
	Gate-Emitter Leakage Current	IGES		USL	Α
teri	Gate Threshold Voltage	VGE(th)	LSL	USL	V
cal istic	Collector-Emitter saturation Voltage	VCE(sat)		USL	V
8	Forward voltage drop	VF		USL	V
Outview	Marking, Soldering and other damages	,Soldering and other damages With eyes or Microscope			

- * LSL: Lower Specification Limit * USL: Upper Specification Limit
- * Before any of electrical characteristics measure, all testing related to the humidity have conducted after drying the package surface for more than an hour at 150°C

Fuji Electric	Systems	Co.,Ltd.
---------------	---------	----------

MS5F07635

11. Cautions

- · Although Fuji Electric is continually improving product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing physical injury, fire, or other problem in case any of the products fail. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
- The products described in this Specification are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
 - · Computers · OA equipment · Communic
- · Communications equipment (Terminal devices)
 - · Machine tools · AV equipment · Measurement equipment
 - · Personal equipment · Industrial robots · Electrical home appliances etc
- The products described in this Specification are not designed or manufactured to be used in
 equipment or systems used under life-threatening situations. If you are considering using these
 products in the equipment listed below, first check the system construction and required reliability,
 and take adequate safety measures such as a backup system to prevent the equipment from
 malfunctioning.
 - · Backbone network equipment
- · Transportation equipment (automobiles, trains, ships, etc.)
- · Traffic-signal control equipment
- · Gas alarms, leakage gas auto breakers
- · Submarine repeater equipment
- Burglar alarms, fire alarms, emergency equipment
- · Medical equipment
- · Nuclear control equipment etc
- · Do not use the products in this Specification for equipment requiring strict reliability such as (but not limited to):
 - · Aerospace equipment
- · Aeronautical equipment

12. Warnings

- The IGBTs should be used in products within their absolute maximum rating (voltage, current, temperature, etc.).
- · The IGBTs may be destroyed if used beyond the rating.

Fuji Electric Systems Co.,Ltd.

- ·It shall be confirmed that IGBT's operating locus of the turn-off voltage and current are within the RBSOA specification. This product may be broken if the locus is out of the RBSOA..
- This product may be broken by avalanche in case of VCE beyond maximum rating VCES is applied between C-E terminals. Use this product within its maximum
- The equipment containing IGBTs should have adequate fuses or circuit breakers to prevent the equipment from causing secondary destruction (ex. fire, explosion etc...).
- · Use the IGBTs within their reliability and lifetime under certain environments or conditions. The IGBTs may fail before the target lifetime of your products if used under certain reliability conditions.
- · Be careful when handling IGBTs for ESD damage. (It is an important consideration.)
- · When handling IGBTs, hold them by the case (package) and don't touch the leads and terminals.
- It is recommended that any handling of IGBTs is done on grounded electrically conductive floor and tablemats.

- · Before touching a IGBT terminal, Discharge any static electricity from your body and clothes by grounding out through a high impedance resistor (about $1M\Omega$)
- · When soldering, in order to protect the IGBTs from static electricity, ground the soldering iron or soldering bath through a low impedance resistor.
- · You must design the IGBTs to be operated within the specified maximum ratings (voltage, current, temperature, etc.) to prevent possible failure or destruction of devices.
- · Consider the possible temperature rise not only for the junction and case, but also for the outer leads.
- · Do not directly touch the leads or package of the IGBTs while power is supplied or during operation in order to avoid electric shock and burns.
- · The IGBTs are made of incombustible material. However, if a IGBT fails, it may emit smoke or flame. Also, operating the IGBTs near any flammable place or material may cause the IGBTs to emit smoke or flame in case the IGBTs become even hotter during operation. Design the arrangement to prevent the spread of fire.
- The IGBTs should not used in an environment in the presence of acid, organic matter, or corrosive gas (hydrogen sulfide, sulfurous acid gas etc.)
- · The IGBTs should not used in an irradiated environment since they are not radiation-proof.

Installation

· Soldering involves temperatures which exceed the device storage temperature rating. To avoid device damage and to ensure reliability, observe the following guidelines from the quality assurance standard.

Soldering methods

Packages			Soldering Methods					
		Wave Soldering (Full dipping)	Wave Soldering (Only terminal)	Infrared Reflow	Air Reflow	Soldering iron (Re-work)		
	TO-220	U	Р	U	U	P1		
<u>_</u>	TO-220F	U	Р	U	U	P1		
Through	TO-3P	U	Р	U	U	P1		
hole package	TO-3PF	U	Р	U	U	P1		
package	TO-247	U	Р	U	U	P1		
	TO-3P	U	Р	U	U	P1		

P: Possible P1: Possible (Only 1 time) P2: Possible (Only 2 times) U: Unable

Solder temperature and duration

Package type		Methods	Soldering Temp. & Time	Note
Through hole	А	Solder dipping Soldering iron	260±5°C, 10±1sec	
package	В	Solder dipping Soldering iron	350±10°C, 3.5±0.5sec	

- The immersion depth of the lead should basically be up to the lead stopper and the distance should be a maximum of 1.5mm from the device.
- · When flow-soldering, be careful to avoid immersing the package in the solder bath.
- Refer to the following torque reference when mounting the device on a heat sink. Excess torque applied to the mounting screw causes damage to the device and weak torque will increase the thermal resistance, both of which conditions may destroy the device.

Table 1: Recommended tightening torques. (Through hole package)

Package style	Screw	Tightening torques	Note
TO-220 TO-220F	M3	30 – 50 Ncm	flatness : $\leq \pm 30 \mu$ m
TO-3P TO-3PF TO-247	М3	40 – 60 Ncm	roughness : $\leq 10 \mu$ m Plane off the edges : $C \leq 1.0$ mm
TO-3PL	М3	60 –80 Ncm	

- The heat sink should have a flatness within $\pm 30 \,\mu$ m and roughness within $10 \,\mu$ m. Also, keep the tightening torque within the limits of this specification.
- Improper handling may cause isolation breakdown leading to a critical accident.
 ex.) Over plane off the edges of screw hole. (Recommended plane off the edge is C<1.0mm)
- · We recommend the use of thermal compound to optimize the efficiency of heat radiation. It is important to evenly apply the compound and to eliminate any air voids.

Storage

- The IGBTs must be stored at a standard temperature of 5 to 35°C and relative humidity of 45 to 75%.
- · If the storage area is very dry, a humidifier may be required. In such a case, use only deionized water or boiled water, since the chlorine in tap water may corrode the leads.
- The IGBTs should not be subjected to rapid changes in temperature to avoid condensation on the surface of the IGBTs. Therefore store the IGBTs in a place where the temperature is steady.
- The IGBTs should not be stored on top of each other, since this may cause excessive external force on the case.
- The IGBTs should be stored with the lead terminals remaining unprocessed. Rust may cause presoldered connections to fail during later processing.
- The IGBTs should be stored in antistatic containers or shipping bags.

WG.NC

MS5F07635

13) Compliance with pertaining to restricted substances

13-1) Compliance with the RoHS Regulations and Exemptions

This product will be fully compliant with the RoHS directive.

Five out of six substances below which are regulated by the RoHS directive in Europe are not included in this product. The exception is only lead.

The RoHS directive has some exemptions. The following relates to this product:

Lead in high melting temperature type solders (Sn-Pb solder alloy which contains more than 85%)

* The six substances regulated by the RoHS Directive are:

Lead, Mercury, Hexavalent chromium, Cadmium, PBB (polybrominated biphenyls), PBDE (polybrominated diphenyl ethers).

13-2) Compliance with the calss-1 ODS and class-2 ODS. (ODS: Ozone-Depleting Substances)

This products does not contain and used the "Law concerning the Protection of the Ozone Layer through the Control of Specified Substances and Other Measures (JAPAN)", and the Montreal Protocol.

- · If you have any questions about any part of this Specification, please contact Fuji Electric or its sales agent before using the product.
- · Neither Fuji nor its agents shall be held liable for any injury caused by using the products not in accordance with the instructions.
- The application examples described in this specification are merely typical uses of Fuji Electric products.
- · This specification does not confer any industrial property rights or other rights, nor constitute a license for such rights.

Fuji Electric Systems Co.,Ltd.

OWG.NC

MS5F07635