MGSF1N02L, MVGSF1N02L

MOSFET - Power: 750 mAmps, 20 Volts

N-Channel SOT-23

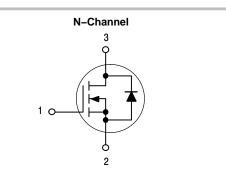
These miniature surface mount MOSFETs low $R_{DS(on)}$ assure minimal power loss and conserve energy, making these devices ideal for use in space sensitive power management circuitry. Typical applications are dc–dc converters and power management in portable and battery–powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

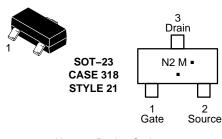
Features

- Low R_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Miniature SOT-23 Surface Mount Package Saves Board Space
- MVGSF Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable*
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	20	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	± 20	Vdc
Drain Current – Continuous @ $T_A = 25^{\circ}C$ – Pulsed Drain Current ($t_p \le 10 \ \mu s$)	I _D I _{DM}	750 2000	mA
Total Power Dissipation @ $T_A = 25^{\circ}C$	PD	400	mW
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to 150	°C
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	300	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


ON Semiconductor®

www.onsemi.com

750 mAMPS, 20 VOLTS R_{DS(on)} = 90 mΩ

MARKING DIAGRAM/ PIN ASSIGNMENT

N2 = Device Code

M = Date Code*

= Pb–Free Package

(Note: Microdot may be in either location) *Date Code orientation and overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

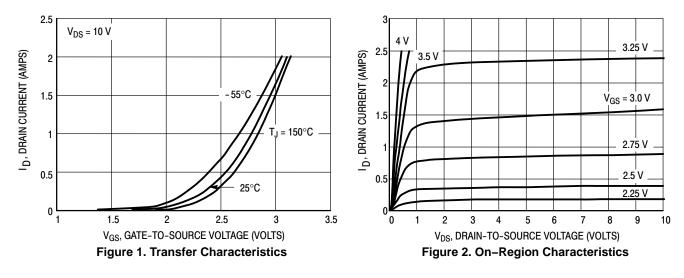
Device	Package	Shipping [†]
MGSF1N02LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
MVGSF1N02LT1G*	SOT-23 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MGSF1N02L, MVGSF1N02L

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage ($V_{GS} = 0 \text{ Vdc}, I_D = 10 \mu \text{Adc}$)		V _{(BR)DSS}	20	-	-	Vdc
Zero Gate Voltage Drain Current $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$		I _{DSS}			1.0 10	μAdc
Gate–Body Leakage Current (V_{GS} = ± 20 Vdc, V_{DS} = 0 Vdc)		I _{GSS}	-	-	±100	nAdc
ON CHARACTERISTICS (Note 1)						
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$		V _{GS(th)}	1.0	1.7	2.4	Vdc
Static Drain-to-Source On-Resistance $(V_{GS} = 10 \text{ Vdc}, I_D = 1.2 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 1.0 \text{ Adc})$		r _{DS(on)}		0.075 0.115	0.090 0.130	Ω
DYNAMIC CHARACTERISTICS						
Input Capacitance	(V _{DS} = 5.0 Vdc)	C _{iss}	-	125	-	pF
Output Capacitance	(V _{DS} = 5.0 Vdc)	C _{oss}	-	120	-	
Transfer Capacitance	(V _{DG} = 5.0 Vdc)	C _{rss}	-	45	-	
SWITCHING CHARACTERISTICS	(Note 2)					
Turn-On Delay Time	$(V_{DD}$ = 15 Vdc, I _D = 1.0 Adc, R _L = 50 Ω)	t _{d(on)}	_	2.5	_	ns
Rise Time		t _r	-	1.0	-	
Turn-Off Delay Time		t _{d(off)}	-	16	-	
Fall Time		t _f	-	8.0	-	
Gate Charge (See Figure 6)		QT	-	6000	-	рС
SOURCE-DRAIN DIODE CHARAC	TERISTICS					
Continuous Current		۱ _S	-	-	0.6	А
Pulsed Current		I _{SM}	-	-	0.75	_
		1		1	t	1

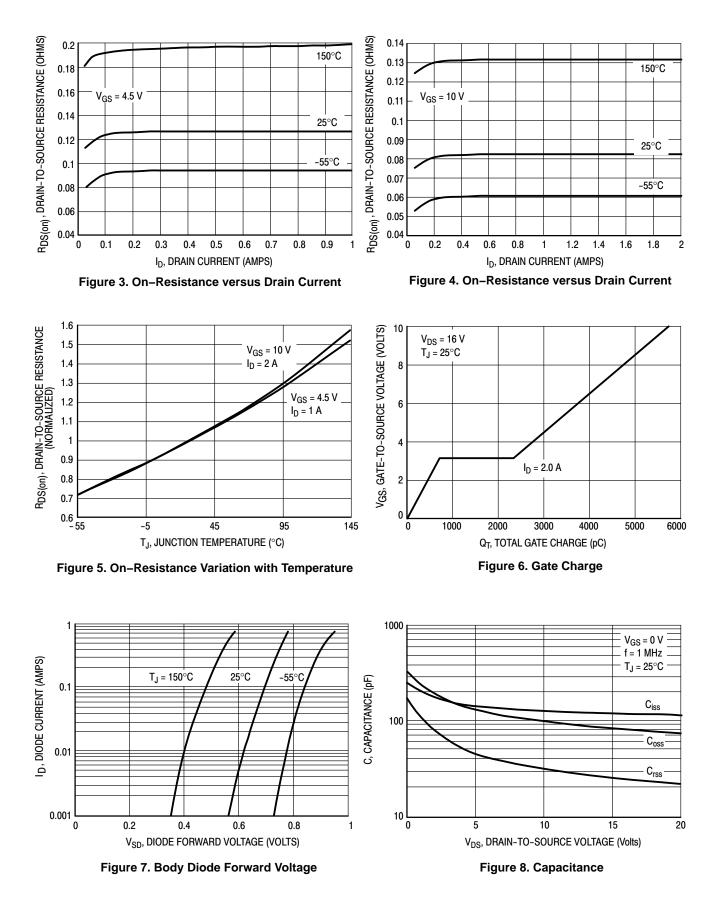
 Pulsed Current
 I_{SM}
 0.75

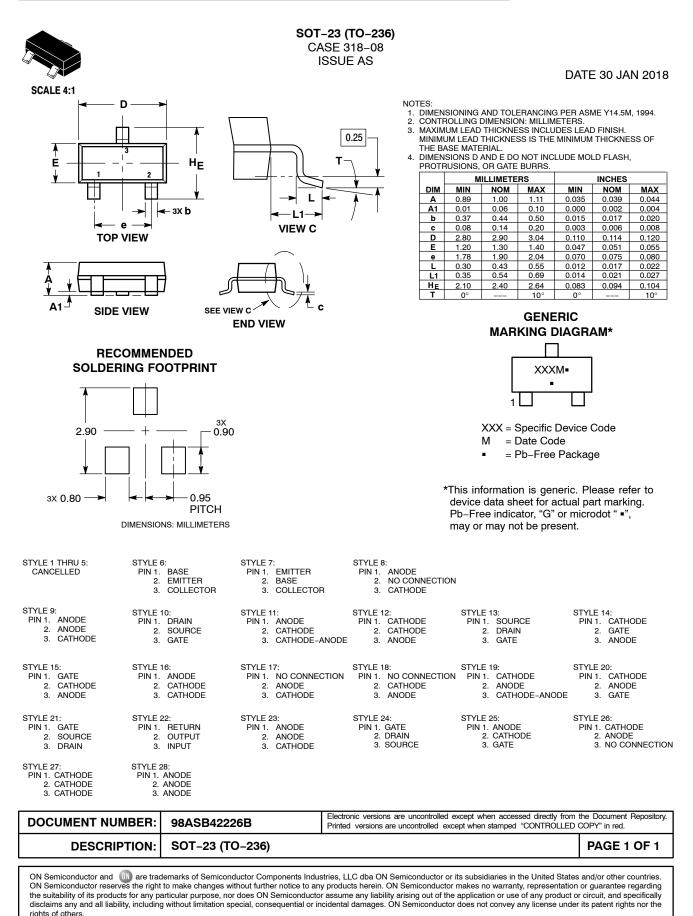

 Forward Voltage (Note 2)
 V_{SD}
 0.8
 V

 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.


2. Switching characteristics are independent of operating junction temperature.


TYPICAL ELECTRICAL CHARACTERISTICS

MGSF1N02L, MVGSF1N02L

TYPICAL ELECTRICAL CHARACTERISTICS

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative