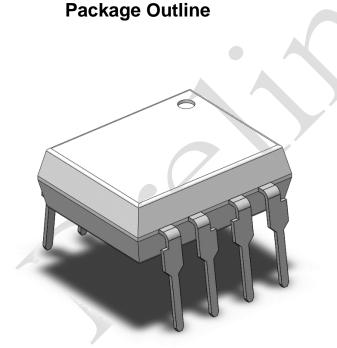
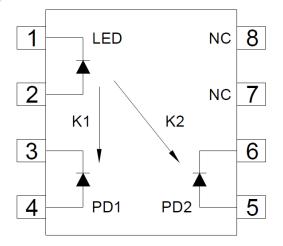


Features


- High isolation 8000 VRMS
- Operating temperature range 55 °C to 100 °C
- DMC[®] structure

Applications


- Power supply feedback voltage / current
- Medical sensor isolation
- Audio signal interfacing
- Isolated process control transducers
- Digital telephone isolation

Description

The CTW20X linear optocoupler consists of an AlGaAs IRLED irradiating an isolated feedback and an output PIN photodiode in a bifurcated arrangement. The feedback photodiode captures a percentage of the LEDs flus and generates a control signal (IP1) that can be used to servo the LED deive current. This technique compensates for the LED's non-linear, time, and temperature characteristics. The output PIN photodiode produces an output signal (IP2) that is linearly related to the servo optical flus created by the LED. The time and temperature stability of the input-output coupler gain (K3) is insured by using matched PIN photodiode that accurately track the output flus of the LED.

Widebody High-Linearity Analong Optocoupler

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage	8000	Vrms	
Topr	Operating temperature	-55 ~ +100	°C	
Tstg	Storage temperature	-55 ~ +150	°C	
TJ	Junction temperature	125	°C	
Tsol	Soldering temperature	260	°C	
Emitter				
l _F	Forward current	25	mA	
IF(TRANS)	Peak transient current (≤1µs P.W,300pps)	40	mA	
VR	Reverse voltage	2.5	V	
PD	Emitter power dissipation (1 Circuit)	60	mW	
Detecto	r 🖉 🖊			
P _{DR(3-4)}	Reverse Output Photodiode Voltage	30	V	
P _{DR(6-5)}	Reverse Input Photodiode Voltage	30	V	

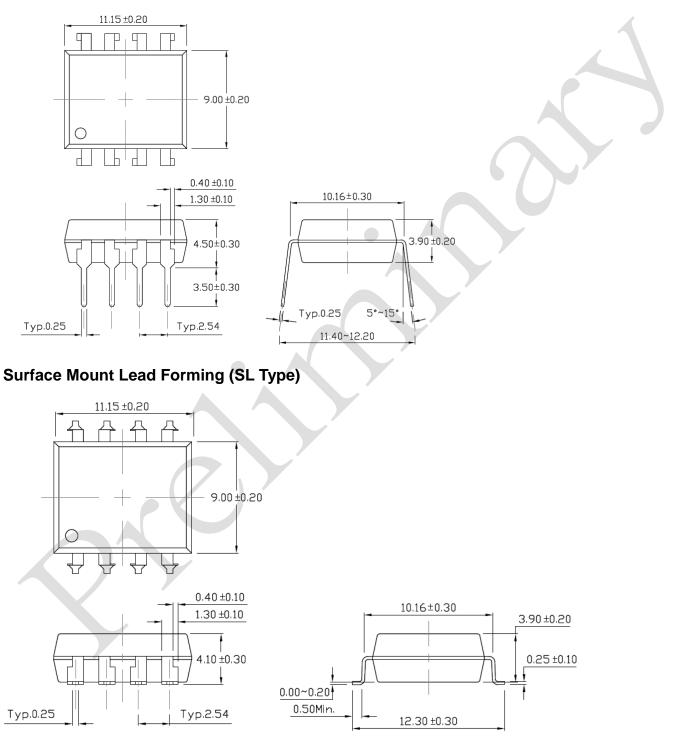
Electrical Characteristics $T_A = 25^{\circ}C$ (unless otherwise specified)

Emitter Characteristics

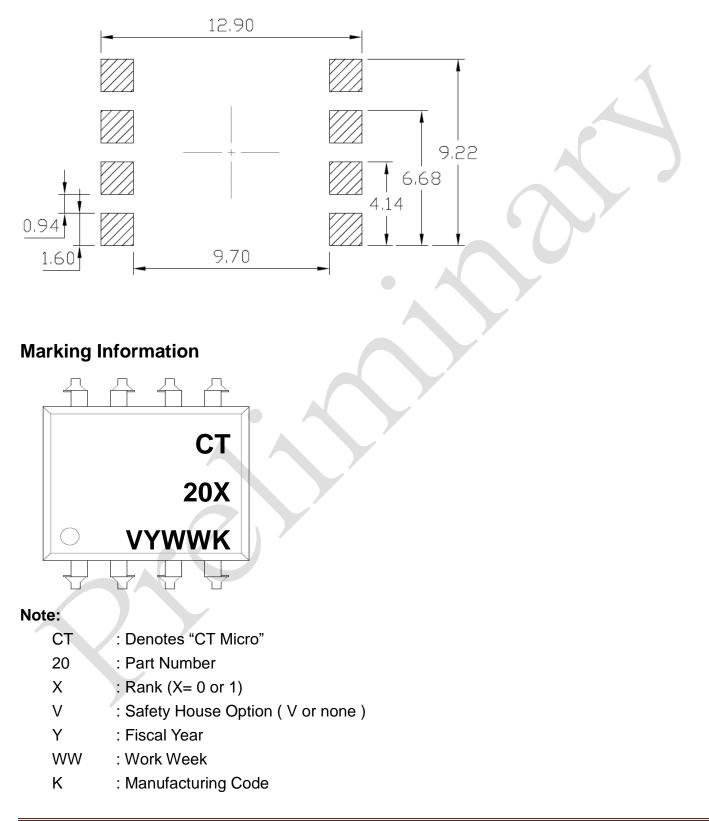
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
V _F	Forward voltage	I _F = 10mA	1.3	1.45	1.85	V	
I _R	Reverse Current	$V_R = 5V$	-	-	10	μA	
C _{IN}	Input Capacitance	f = 1MHz	-	30	-	pF	

Detector Characteristics

Symbol	Parameters		Test Conditions	Min	Тур	Max	Units	Notes
K	Transfer Gain	CTW200	5nA < I _{PD} < 50µA,	0.85	1.00	1.15		
K ₃		CTW201	0V < V _{PD} < 15V	0.95	1.00	1.05		
$\Delta K_3 / \Delta T_A$	Temperature Coefficient of Transfer Gain		-40° C < T _A < 85°C, 5nA < I _{PD} < 50µA, 0V < V _{PD} < 15V		-65		ppm/°C	
NL _{BF}	DC NonLinearity	CTW200	5nA < I _{PD} < 50µA,		0.01	0.25	%	
INLBF	(Best Fit)	CTW201	0V < V _{PD} < 15V		0.01	0.05	70	
NL _{EF}	DC NonLinearity (Ends	Fit)	5nA < I _{PD} < 50μA, 0V < V _{PD} < 15V		0.016		%	
C _{PD}	Photodiode Capacitance	9	V _{PD} = 0V		22		pF	


Transfer Characteristics

Symbol	Parameters		Test Conditions	Min	Тур	Max	Units	Notes
	Input Photo-diode	CTW200	I _F = 10mA,	0.25	0.50	0.75		
К1	Current Transfer Ratio $(I_{PD}/I_{F)}$	CTW201	0V < V _{PD1} < 15V	0.36	0.48	0.72	%	
	/ /		-40°C < T _A < 85°C,					
$\Delta K_1 / \Delta T_A$	Temperature Coefficient	t of K ₁	$I_F = 10 m A$,		-0.3		%/ °C	
			0V < V _{PD1} < 15V					
I _{LK}	Photodiode Leakage Current		$I_F = 0mA$,		0.5	25	nA	
ΊLK			V _{PD1} = 15V		0.0	25		
BV _{RPD}	Photodiode Reverse Breakdown		Ι _R = 100μΑ	30	150		v	
	Voltage							

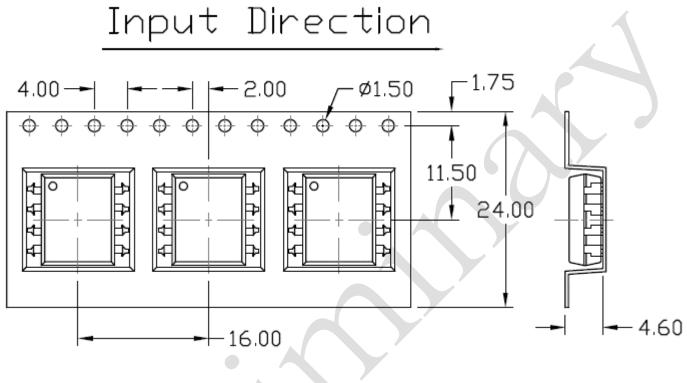

Package Dimension Dimensions in mm unless otherwise stated

Standard DIP – Through Hole

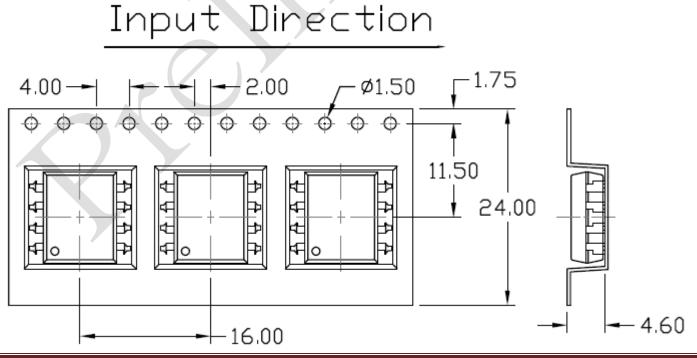
Recommended Solder Mask Dimensions in mm unless otherwise stated

Ordering Information

CTW20X(V)(Y)(Z)


- X : Part No. (X= 0 or 1)
- V : VDE Option (V or none)
- Y : Lead form option (SL or none)
- Z : Tape and reel option (T1, T2 or none)

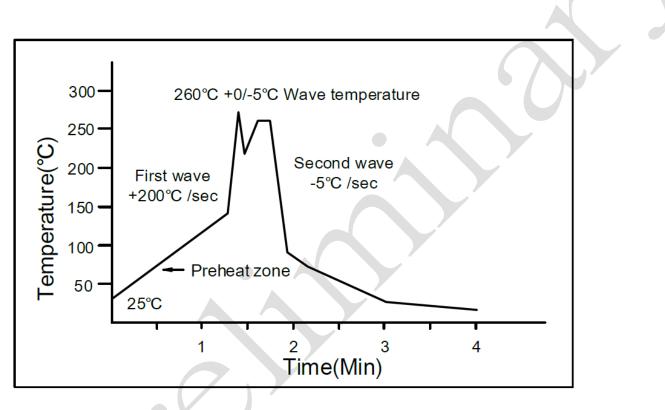
Option	Description	Quantity
None	Standard 8 Pin Dip	40 Units/Tube
SL(T1)	Surface Mount (Low Profile) Lead Forming– With Option 1 Taping	750 Units/Reel
SL(T2)	Surface Mount (Low Profile) Lead Forming– With Option 2 Taping	750 Units/Reel



Option SL(T1)

Option SL(T2)

Wave soldering (follow the JEDEC standard JESD22-A111)

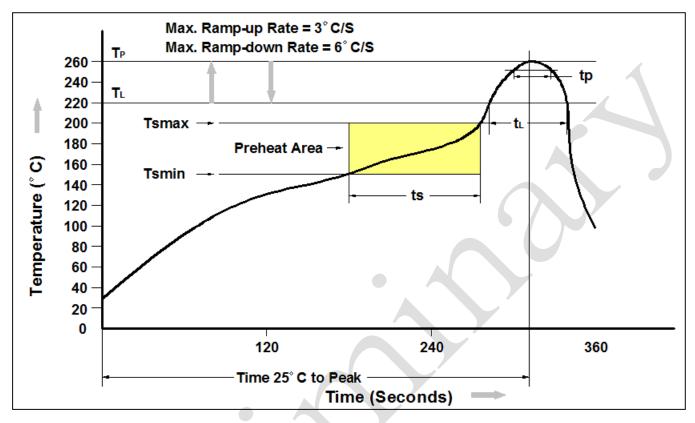

One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C.

Time: 10 sec.

Preheat temperature:25 to 140°C.

Preheat time: 30 to 80 sec.


Iron soldering (follow the standard MIL-STD 202G, Method 210F)

Allow single lead soldering in every single process. One time soldering is recommended. Temperature: 350+±10°C Time: 5 sec max.

CTW20X Series Widebody High-Linearity Analong Optocoupler

Reflow Profile

Profile Feature	Pb-Free Assembly Profile			
Temperature Min. (Tsmin)	150°C			
Temperature Max. (Tsmax)	200°C			
Time (ts) from (Tsmin to Tsmax)	60-120 seconds			
Ramp-up Rate (t∟ to t⊳)	3°C/second max.			
Liquidous Temperature (T _L)	217°C			
Time (t_L) Maintained Above (T_L)	60 – 150 seconds			
Peak Body Package Temperature	260°C +0°C / -5°C			
Time (t _P) within 5°C of 260°C	30 seconds			
Ramp-down Rate (T_P to T_L)	6°C/second max			
Time 25°C to Peak Temperature	8 minutes max.			

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.