
High Efficiency, 2.5A, Multi-Cell Li-Ion Battery Charger

General Description

SY6924 is a 4-14V input, 2.5A multi-cell Li-Ion battery step-down charger. The charge current up to 2.5A can be programmed by using the external resistor for different portable applications. It also has a programmable charge timeout and adaptive input power limit for safety battery charge operation. It consists of 16V rating reverse blocking FET and power switching FETs with extremely low ON resistance to achieve high charge efficiency and simple peripheral circuit design.

SY6924 along with small QFN3×3 footprint provides small PCB area application.

Ordering Information

Features

- Integrated Synchronous Buck and Reverse Blocking FET with 16V Rating
- Adaptive Input Power Limit for 4-14V Wide Input Voltage
- Maximum 2.5A Programmable Charge Current
- 4.2V and 4.35V Constant Voltage Selectable
- +/-0.5% Cell Voltage Accuracy
- Support Single-cell or Two-cell Battery Pack
- External Shutdown Function
- Input Voltage UVLO and OVP
- Thermal Fold-back Protection
- Over Temperature Protection
- Battery Short Protection
- Programmable Charge Timeout
- Charge Status Indication
- Low Profile QFN3×3 Package for Portable Applications

Applications

- Power Bank
- Cellular Telephones, PDA, MP3 Players, MP4 Players
- PSP Game Players, NDS Game Players
- Notebook

Typical Applications

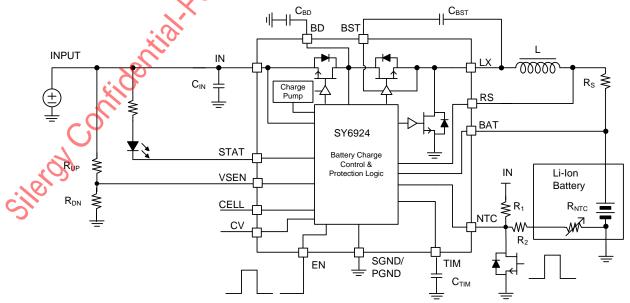
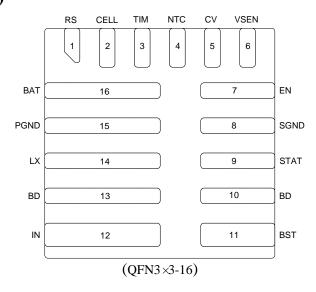



Figure 1. Schematic Diagram

Pinout (top view)

Top Mark: **Ynxyz**, (Device code: Yn, *x=year code*, *y=week code*, *z= lot number code*)

Pin Name	Pin Number	Description		
RS	1	Charge current sense resistor positive pin. The sensed voltage between RS and BAT is used for charge current regulation charge termination detection.		
CELL	2	Battery voltage selection pin. Floating for two cells battery and grounding for single cell battery. CELL pin can't be pulled high to any bias voltage higher than 3.3V.		
TIM	40	Charge time-out programming pin. Connect this pin with a capacitor to ground to program the time-out protection threshold. Internal current source charge the capacitor for TC mode and fast charge (CC&CV) mode's charge time limit. TC charge time limit is about 1/9 of fast charge time.		
NIC	4	Battery thermal sense pin. The voltage on the NTC pin is sensed for battery thermal protection. UTP threshold is typical 76% of $V_{\rm IN}$ and OTP threshold is typical 45% of $V_{\rm IN}$. NTC pin also can be used for the adaptive input power limit reference refresh. The adaptive input power limit threshold will be refreshed when NTC is pulled low for more than 100ms. SY6924 sets the charge current to the trickle value; the IC will refresh the adaptive input power limit threshold according the input voltage. For higher than 6V input, the IC will clamp the input voltage at $V_{\rm IN}$ -0.6V by regulating the duty cycle of Buck converter. For lower than 6V input, the clamped input voltage is set by VSEN pin.		
CV 5		Battery CV voltage selection pin.		
VSEN	6	Input voltage sense pin for adaptive input power limit. If the voltage drops to internal 1.19V reference voltage, the $V_{\rm IN}$ will be clamped to setting value and input current will be limited.		
EN 7		Enable control pin. High logic for enable on and low logic for enable off.		
SGND	8	Signal ground pin.		

STAT	9	Charge status indication pin. Open drain pin. Pull high to IN thru a LED to indicate the charge in process. When the charge is done, LED is off.		
BD	10, 13	Connect to the drain of internal blocking FET. Bypass at least a 10 µF ceramic cap to GND.		
BST	11	Boot-strap pin. Supply main FET's gate driver. Decouple this pin to LX with a 0.1 µF ceramic cap.		
IN	12	DC power input pin. Connect a MLCC from this pin to ground to decouple high harmonic noise. This pin has OVP and UVLO function to make the charger operate within safe input voltage area.		
LX	14	Switch node pin. Connect to external inductor.		
PGND	15	Power ground pin.		
BAT	16	Battery voltage sense pin.		

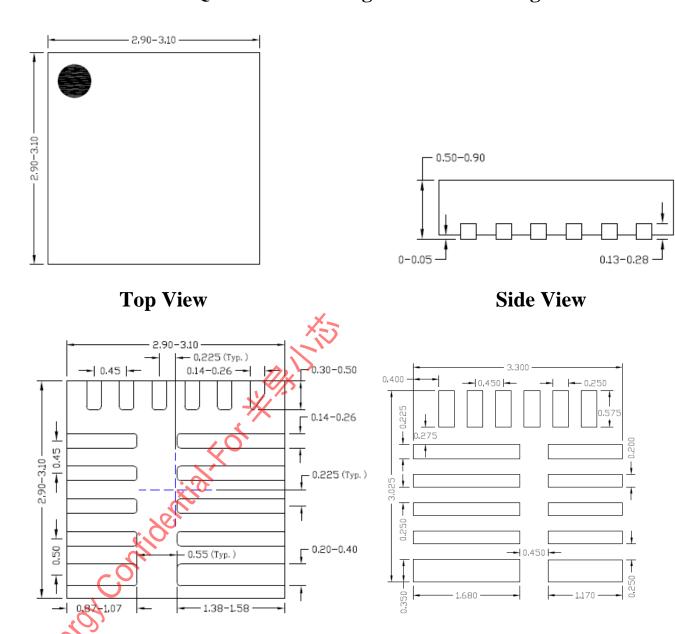
Absolute Maximum Ratings (Note 1)	
IN, BAT, LX, NTC, STAT, BD, EN, CV, VSEN	18V
TIM, CELLBST-LX Voltage	4V
BST-LX Voltage	4V
RS	
LX Pin Current Continuous	
Power Dissipation, PD @ TA = 25 °C, QFN3 ×3	2.1W
Package Thermal Resistance (Note 2)	
$ heta_{ m JA}$	48 ℃/W
θ _{1C}	4 °C/W
Junction Temperature Range	
$\theta_{JA} - \cdots \\ \theta_{JC} - \cdots \\ Junction Temperature Range - \cdots \\ Lead Temperature (Soldering, 10 sec.) - \cdots \\ Storage Temperature Range - \cdots \\ -$	260 ℃
Storage Temperature Range	
	35 5 31 55 5
Recommended Operating Conditions (Note 3)	
IN	
BAT, LX, NTC, STAT, BD, EN, CV, VSENTIM, CELL	0V to16V
TIM, CELL	0V to 3.3V
BST-LX Voltage	0V to 3.3V
LX Pin Current Continuous	
Junction Temperature Range	
Ambient Temperature Range	

Electrical Characteristics

 $T_A=25~\text{C},~V_{IN}=5V,~GND=0V,~C_{IN}=10~\mu\text{F},~L=2.2~\mu\text{H},~R_S=10\text{m}\Omega,~C_{TIM}=330\text{nF},~unless~otherwise~specified.}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Bias Supply (V _{IN})	J J		I	JI		
Supply Voltage Operation						
Range	$V_{\rm IN}$		4		14	V
Input Voltage Lockout	* 7	V _{IN} rising and measured			4	* 7
Threshold	$V_{\rm UVLO}$	from IN to ground			4	V
Input Voltage Lockout	437	Measured from IN to		0.2		T 7
Hysteresis	ΔV_{UVLO}	ground		0.2		V
Input Over Voltage Protection	V _{IN_OVP}	V _{IN} rising and measured from IN to ground	13.5			V
Input Over Voltage Protection Hysteresis	ΔV_{OVP}	Measured from IN to ground		0.5		V
Quiescent Current			ı	ı	ı	
Battery Discharge Current	I_{BAT}	V _{IN} absent or EN=Low		5	10	μA
Input Quiescent Current	I _{IN}	Disable charge		0.8	1.1	mA
Oscillator and PWM					•	
Switching Frequency	fsw			500		kHz
Power MOSFET	.511	<u> </u>	<u> </u>		<u> </u>	
R _{DS(ON)} of Main N-FET	D			30		mO
(/	R _{NFET_M}	X_				mΩ
R _{DS(ON)} of Rectified N-FET	R _{NFET_R}			55		m Ω
R _{DS(ON)} of Blocking N-FET	R _{NFET_B}			45		${ m m}\Omega$
Voltage Regulation	M		•	•	•	
	10/2	1-cell battery, V _{CV} <0.4V	4.179	4.2	4.221	
Dottom Change Walters	YBAT_REG	1-cell battery, V _{CV} >1.5V	4.328	4.35	4.371	17
Battery Charge Voltage		2-cell battery, V _{CV} <0.4V	8.358	8.4	8.442	V
		2-cell battery, V _{CV} >1.5V	8.656	8.7	8.744	
Recharge Threshold Refer to	A 3.7	1-cell battery	50	100	150	mV
V _{BAT_REG}	ΔV_{RCH}	2-cell battery	100	200	300	mV
Trickle Charge Rising Edge	V	1-cell battery	2.7	2.8	2.9	V
Threshold	V_{TRK}	2-cell battery	5.4	5.6	5.8	V
Adaptive Input Current REF	Modify					
NTC Voltage Threshold for Adaptive Input Current Reference Refresh	$V_{\rm NTC}$	NTC falling edge	0.4			V
NTC Low Time to Enable the Adaptive Input Current Refresh	$t_{ m DET}$	Low pulse width		100		ms
Charge Current						
Charge Current Accuracy for Constant Current Mode	I_{CC}	$I_{CC}=25\text{mV/R}_{S}$	-10%		10%	
Charge Current Accuracy for Trickle Current Mode	I _{TC}	I _{TC} =2.5mV/R _S	-50%		50%	
Termination Current	I _{TERM}	I _{TERM} =2.5mV/R _S	-50%		50%	
Output Voltage OVP						
Output Voltage OVP Threshold	V _{O_OVP}		105%	110%	115%	V_{BAT_REG}
Adaptive Input Power Limit Re	_		l .	I.	I	
Reference for Adaptive Input Power Limit	V _{SEN}		1.16	1.19	1.22	V
The Adaptive Input Power Limit Reference is V_{IN} - ΔV_{AICL}	ΔV_{AICL}	NTC pull low than 100ms and V _{IN} is higher than 6V		600		mV

Timeout	Timer						
Timeout	Trickle Current Charge	tma		0.36	0.5	0.64	hour
Timeout		UTC		0.30	0.3	0.04	noui
Inneout		too		3.5	15	5.5	hour
Time		rcc		3.3	4.5	3.3	noui
Time	Charge Mode Change Delay	tura			30		me
Recharge Time Delay		tMC			30		1113
Short Circuit Protection		t_{TERM}					ms
Output Short Protection Threshold, Falling Edge V _{SHORT} 1.7 2.00 2.3 V Auto Shut Down Auto Shutdown Voltage Threshold V _{ASD} V _{IN} fall, measured from IN to BAT 40 110 180 mV Auto Shutdown Voltage Threshold ΔV _{ASD} V _{IN} rise, measured from IN to BAT 65 mV Auto Shutdown Voltage Threshold Hysteresis ΔV _{ASD} V _{IN} rise, measured from IN to BAT 65 mV High Level Logic for Enable Control V _{ENH} 1.5 V V Low Level Logic for Enable Control V _{ENL} 1.5 V V High Level Logic for CV V _{CVH} 1.5 V V High Level Logic for CV V _{CVL} V 0.4 V BAT 1.5 V V V 0.4 V High Level Logic for CV V _{CVL} V _{CVL} V V 0.4 V BAT Thermal Protection NTC V _{CVL} Treather Mysteresis Treather Mysteresis Treather Mysteresis Treather Mysteresis Treather Myste		t_{RCHG}			30		ms
Threshold, Falling Edge	Short Circuit Protection						
Auto Shut Down	Output Short Protection	V		1.7	2.00	2.2	χ,
Auto Shutdown Voltage Threshold V_{ASD} V_{IN} fall, measured from IN to BAT 40 110 180 mV Auto Shutdown Voltage Threshold Hysteresis ΔV_{ASD} V_{IN} rise, measured from IN to BAT 65 mV Logical Control High Level Logic for Enable Control V_{ENL} 1.5 V Low Level Logic for Enable Control V_{ENL} 0.4 V Low Level Logic for CV V_{CVH} 1.5 V Under Temperature Protection V_{CVL} V_{CVH} 1.5 V Under Temperature Protection $V_{NTC_{OTP_{HYS}}$ Falling edge 5% 7% 77% Over Temperature Protection $V_{NTC_{OTP_{LHYS}}$ Rising edge 1.5% V V Thermal Fold-back and Thermal Shutdown		V SHORT		1.7	2.00	2.3	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Auto Shut Down						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Auto Shutdown Voltage	V	V _{IN} fall, measured from IN to	40	110	190	
Auto Shutdown Voltage Threshold Hysteresis ΔV_{ASD} ΔV_{N} rise, measured from IN to BAT ΔV_{N} rise, measured from		V ASD	BAT	40	110	180	mV
The shold Hysteresis BA1	Auto Shutdown Voltage	AV	V _{IN} rise, measured from IN to		65		111 V
High Level Logic for Enable Control Low Level Logic for Enable Control Venu Venu High Level Logic for CV Vevu High Level Logic for CV Vevu Low Level Logic for CV Vevu Battery Thermal Protection NTC Under Temperature Protection Hysteresis Venu V	Threshold Hysteresis	ΔVASD	BAT		03		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Logical Control						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	High Level Logic for Enable	V		1.5			W
Control		V ENH		1.3			v
High Level Logic for CV V_{CVH} 1.5 V_{CVL} Battery Thermal Protection NTC Under Temperature Protection $V_{NTC_OTP_HYS}$ Falling edge $V_{NTC_OTP_HYS}$ Falling edge $V_{NTC_OTP_HYS}$ Rising edge $V_{NTC_OTP_HYS}$ Falling edge $V_{NTC_OTP_HYS}$ Rising edge $V_{NTC_OTP_$	Low Level Logic for Enable	V				0.4	V
Low Level Logic for CV V_{CVL} 0.4VBattery Thermal Protection NTCUnder Temperature Protection Hysteresis $V_{NE_{OTP}}$ 75%76%77%Under Temperature Protection Hysteresis $V_{NTC_{OTP}}$ Falling edge5% $V_{NTC_{OTP}}$ Over Temperature Protection Hysteresis $V_{NTC_{OTP_{HYS}}}$ Rising edge1.5% $V_{NTC_{OTP_{HYS}}}$ Thermal Fold-back and Thermal ShutdownThermal Fold-back Threshold120 C Thermal Fold-back Hysteresis Falling Edge T_{Fold} 20 C Thermal Fold-back Ratio I_{Fold} 0.25 I_{CC} Thermal Shutdown Temperature T_{SD} Rising threshold160 C Thermal Shutdown Temperature T_{CDUVS} T_{CDUVS} T_{CDUVS}	0 0 1111 0 1	<u>~</u>				0.4	,
Under Temperature Protection VNTC_UTP_HYS Under Temperature Protection Hysteresis Over Temperature Protection Hysteresis VNTC_OTP VNTC_OTP HYS Rising edge Thermal Fold-back and Thermal Shutdown Temperature Fold-back Ratio Thermal Shutdown Temperature Te		V _{CVH}	3	1.5			V
Under Temperature Protection VNTC_UTP_HYS Under Temperature Protection Hysteresis Over Temperature Protection Hysteresis VNTC_OTP VNTC_OTP Rising edge Thermal Fold-back and Thermal Shutdown Temperature Fold-back Ratio Thermal Shutdown Temperature Temperat	Low Level Logic for CV	V_{CVL}				0.4	V
Under Temperature Protection Hysteresis Over Temperature Protection Over Temperature Protection Hysteresis Over Temperature Protection Hysteresis VNTC_OTP Rising edge 1.5% VIN Over Temperature Protection Hysteresis Thermal Fold-back and Thermal Shutdown Thermal Fold-back Threshold Temperature Thermal Fold-back Hysteresis Falling Edge Thermal Fold-back Ratio Temperature Thermal Shutdown Temperature Thermal Shutdown Temperature Tremal Shutdown Temperature Tremal Shutdown Temperature Tremal Shutdown Temperature T	Battery Thermal Protection NT	TC \					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Under Temperature Protection	V _{NTC_UTP}		75%	76%	77%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Under Temperature Protection	3//	Folling adag		50/		
	Hysteresis	NTC_UTP_HYS	rannig edge		3%		17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Over Temperature Protection	V _{NTC_OTP}		44%	45%	46%	V IN
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Over Temperature Protection	V	Dising adap		1.50/		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hysteresis	V NTC_OTP_HYS	Rising edge		1.5%		
	Thermal Fold-back and Therm	al Shutdown					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thermal Fold-back Threshold	T_{Fold}			120		C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thermal Fold-back Hysteresis	т			20		gr.
	Falling Edge	1 FoldHYS			20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I_{Fold}			0.25		I_{CC}
Thermal Shutdown Topius 30 C	Thermal Shutdown		Dising the sale and		160		
Thermal Shutdown Topius 30 C	Temperature	1 SD	Kising unresnoid		100		
Temperature Hysteresis 1 SDHYS 50 C		т			20		97
100010010	Temperature Hysteresis	1 SDHYS			30		


Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

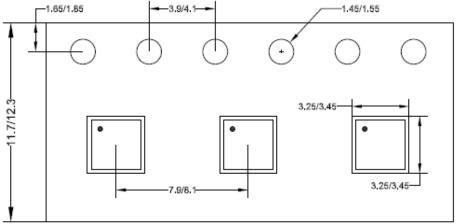
Note 2: θ_{JA} is measured in the natural convection at $T_A = 25$ °C on a low effective four-layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

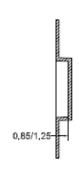
Note 3: The device is not guaranteed to function outside its operating conditions.

QFN3×3-16 Package Outline Drawing

Notes: All dimension in millimeter and exclude mold flash & metal burr.

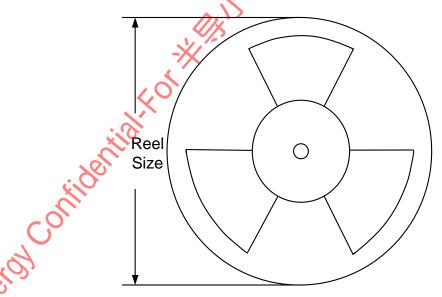
Bottom View


Recommended PCB Layout (Reference Only)



Taping & Reel Specification

1. Taping orientation



Feeding direction —

2. Carrier Tape & Reel specification for packages

C	Package type	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
	QFN3x3	12	8	13"	400	400	5000

3. Others: NA

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change				
Mar.26, 2020	Revision 0.9B	Change " V_{NTC_UTP} " min value from 74% to 75%, typical value from 75% to 76%, max value from 76% to 77%				
,Nov.16, 2017	Revision 0.9A	$ \begin{array}{c} \text{1. Change "V}_{NTC_UTP} \text{" min value from 70\% to 74\%, max value from 80\% to } \\ 76\%. \\ \text{2. Change "V}_{NTC_OTP} \text{" min value from 43\% to 44\%, max value from 47\% to } \\ 46\%. \\ \text{3. In Page 10, Change from "Define KUT, KUT =70~80\%" to "Define KUT, KUT =74~76\%", change from "Define KOT, KOT =43~47\%" to "Define KOT, KOT =44~46\%". \\ \text{4. In page 10, chage the formula from } \\ \hline R_s = \frac{25}{I_{cc}} \\ \hline \text{to } \\ \hline R_s = \frac{25\text{mV}}{I_{cc}} \\ \hline \end{array} $				
Aug. 9, 2017	Revision 0.9	Initial Release				

IMPORTANT NOTICE

- 1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.
- 2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
- 3. **Limited warranty and liability.** Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
- 4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
- 5. **Terms and conditions of commercial sale.** Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
- 6. **No offer to sell or license**. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2018 Silergy Corp.

All Rights Reserved.